Computationally efficient parabolic equation solutions to seismo-acoustic problems involving thin or low-shear elastic layers.
نویسندگان
چکیده
Shallow-water environments typically include sediments containing thin or low-shear layers. Numerical treatments of these types of layers require finer depth grid spacing than is needed elsewhere in the domain. Thin layers require finer grids to fully sample effects due to elasticity within the layer. As shear wave speeds approach zero, the governing system becomes singular and fine-grid spacing becomes necessary to obtain converged solutions. In this paper, a seismo-acoustic parabolic equation solution is derived utilizing modified difference formulas using Galerkin's method to allow for variable-grid spacing in depth. Propagation results are shown for environments containing thin layers and low-shear layers.
منابع مشابه
Seismo-acoustic propagation near thin and low-shear speed ocean bottom sediments using a massive elastic interface.
The seafloor is considered to be a thin surface layer overlying an elastic half space. In addition to layers of this type being thin, they may also have shear wave speeds that can be small (order 100 m/s). Both the thin and low-shear properties, viewed as small parameters, can cause mathematical and numerical singularities to arise. Following the derivation presented by Gilbert [Geophys. J. Int...
متن کاملParabolic equation solution of seismo-acoustics problems involving variations in bathymetry and sediment thickness.
Recent improvements in the parabolic equation method are combined to extend this approach to a larger class of seismo-acoustics problems. The variable rotated parabolic equation [J. Acoust. Soc. Am. 120, 3534-3538 (2006)] handles a sloping fluid-solid interface at the ocean bottom. The single-scattering solution [J. Acoust. Soc. Am. 121, 808-813 (2007)] handles range dependence within elastic s...
متن کاملComparison of simulations and data from a seismo-acoustic tank experiment.
A tank experiment was carried out to investigate underwater sound propagation over an elastic bottom in flat and sloping configurations. The purpose of the experiment was to evaluate range-dependent propagation models with high-quality experimental data. The sea floor was modeled as an elastic medium by a polyvinyl chloride slab. The relatively high rigidity of the slab requires accounting for ...
متن کاملElastic parabolic equation solutions for underwater acoustic problems using seismic sources.
Several problems of current interest involve elastic bottom range-dependent ocean environments with buried or earthquake-type sources, specifically oceanic T-wave propagation studies and interface wave related analyses. Additionally, observed deep shadow-zone arrivals are not predicted by ray theoretic methods, and attempts to model them with fluid-bottom parabolic equation solutions suggest th...
متن کاملSeismo-acoustic ray model benchmarking against experimental tank data.
Acoustic predictions of the recently developed traceo ray model, which accounts for bottom shear properties, are benchmarked against tank experimental data from the EPEE-1 and EPEE-2 (Elastic Parabolic Equation Experiment) experiments. Both experiments are representative of signal propagation in a Pekeris-like shallow-water waveguide over a non-flat isotropic elastic bottom, where significant i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 133 4 شماره
صفحات -
تاریخ انتشار 2013